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Abstract

The number of GPS-tagged images available on the web
is increasing at a rapid rate. The majority of such location
tags are specified by the users, either through manual tag-
ging or localization-chips embedded in the cameras. How-
ever, a known issue with user shared images is the unrelia-
bility of such GPS-tags. In this paper, we propose a method
for addressing this problem. We assume a large dataset of
GPS-tagged images which includes an unknown subset with
contaminated tags is available. We develop a robust method
for identification and refinement of this subset using the rest
of the images in the dataset. In the proposed method, we
form a large number of triplets of matching images and use
them for estimating the location of the query image utiliz-
ing structure from motion. Some of the generated estima-
tions may be inaccurate due to the noisy GPS-tags in the
dataset. Therefore, we perform Random Walks on the es-
timations in order to identify the subset with the maximal
agreement. Finally, we estimate the GPS-tag of the query
utilizing the identified consistent subset using a weighted
mean. We propose a new damping factor for Random Walks
which conforms to the level of noise in the input, and con-
sequently, robustifies Random Walks. We evaluated the pro-
posed framework on a dataset of over 18k user-shared im-
ages; the experiments show our method robustly improves
the accuracy of GPS-tags under diverse scenarios.

1. Introduction

Due to the emergence of mobile devices with various
internal positioning methods, the majority of images taken
nowadays can be geo-tagged at the time of collection. How-
ever, different tagging systems, e.g. GPS, WiFi positioning
system (WPS), Cell positioning system, manual tagging,
etc. have a broad range of reliability and accuracy which
altogether translate into inaccuracies in the geo-tags of user-
shared images. These inaccuracies can become critical for
the applications which are based on crowdsourced images,
such as 3D reconstruction [1] or image localization [5, 8].

In general, the fact that user-shared images typically
have inaccurate and unreliable GPS-tags is well known and
is acknowledged in several previous works [20, 5, 12]. In
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Figure 1. The user-specified GPS-tags (blue) of about 100 images
from Pittsburgh along with their correct GPS-locations (red). The
green line connects the user-specified location to the ground truth.
Significant inaccuracies in the GPS labels can be observed. In this
paper, we propose a robust method for refining the GPS-tags.

this paper, we propose a method for GPS-tag refinement.
That is, given a dataset of GPS-tagged images with an un-
known subset which includes inaccuracies in the tags, we
discover the contaminated subset and adjust its GPS-tags to
the correct locations. We achieve this goal utilizing the rest
of the images in the dataset (i.e. self-refinement) without
using any other source of imagery or data. We accomplish
this task by generating a large number of estimations for the
location of a particular image in the dataset based on the rest
of the images therein. Then, we use a robust method based
on Random Walks which identifies the reliable estimations
based on their pairwise consistency and use them for com-
puting the refined GPS-tag. Robustness is the key trait of
the proposed method. We show that our approach achieves
good characteristics in this regard, such as high Breakdown
Point or descending Influence Function [6] (section 3).

Besides the inaccurate geo-tags, another main charac-
teristic of user-shared images is their non-uniform distribu-
tions with respect to different locations. Many factors, such
as the layout of the city or the dynamics of the area could
cause the non-uniformity. We argue that the nonuniform
distribution could act as a bias in various applications, par-
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ticularly image localization and GPS-tag refinement. We
incorporate the geo-distribution of user images a priori in
our framework in order to cope with the bias it causes.

Random Walks include a term (damping factor) which is
primarily intended for injecting the prior knowledge about
the data in the diffusion process. We use this term for in-
corporating the geo-distribution in the refinement. How-
ever, we argue that the conventional constant damping fac-
tor makes Random Walks prone to noise in the input. In-
stead, we propose an adaptive damping factor which con-
forms to the estimated level of noise in each input data point
and consequently robustifies Random Walks.

Various operations on textual tags of images such as
labeling[9], ranking [10] and refinement [19] have been ex-
tensively explored in the literature. The main differences
between our work and the aforementioned ones are refining
the GPS-tags, which are numerical and consequently pose a
problem with different properties compared to textual tags,
and maintaining robustness as a key factor.

Additionally, several methods for automatic image geo-
localization have been recently developed [5, 8, 12]. These
methods often require a reference dataset (e.g. Street View)
with presumably accurate GPS-tags, whereas our approach
performs self-refinement, has an internal robustness mecha-
nism, and effectively uses the initial GPS-tag of the image.

In the Structure from Motion literature, Crandall et al.
[2] developed a method for adjusting camera parameters
using a graph which spans the whole dataset and by per-
forming a global optimization for all of the images simul-
taneously. On the contrary, we refine the camera location
of one image at a time (our graph includes the location esti-
mations for one image instead of all images) which yields a
significant speedup without sacrificing the robustness. Zach
et al. [18] proposed a loop constraint for finding incor-
rect geometric relations between images which results in
a better reconstructed 3D model. However, estimating the
global GPS-tags of the cameras (even given a perfectly re-
constructed local model) when the original reference GPS-
tags include outliers is a question which is not in the scope
of their work as well as many other Structure from Motion
and bundle adjustment methods. Havlena et al. [4] used
image triplets, instead of pairs, in 3D reconstruction with
the intention of having more reliable initial atomic recon-
structions, whereas we employ triplets to remove the scale
ambiguity and estimate as many independent estimations as
possible for the GPS location of the camera.

The main contributions of this paper can be summarized
as: 1) a novel framework for robust refinement of GPS-tags
using Random Walks. 2) a new adaptive damping factor for
Random Walks. 3) a large scale study of the statistical prop-
erties of noise in the GPS-tags of crowdsourced images.
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Figure 2. The block diagram of the proposed method.

2. Robust Tag Refinement
The block diagram of the proposed method is shown in

figure 2. Given a large dataset of images with contaminated
geo-tags, first we perform content-based matching between
the query image, which is one of the dataset images, and the
rest of the dataset and retrieve a number of matches. Then,
a large number of image triplets comprised of the query
and each feasible pair of retrieved matches are formed. We
perform structure from motion (SfM) on each triplet which
yields one estimation for the location of the query. Since
a considerable percentages of these estimations are inaccu-
rate, we perform Random Walks on a graph defined on the
estimations to discover the accurate subset. The final es-
timation of the query’s location is obtained by finding the
mean of the estimations weighted by the scores acquired
from the Random Walks. The details of each step are pro-
vided in the following sections.

2.1. Generating Estimations using Triplets

We match the query image, I, against the rest
of the images in the dataset and retrieve µ matches
{m1,m2, . . . ,mµ}. We use bag of SIFT words with a vo-
cabulary size of 50k for matching [11].

Next,
(
µ
2

)
image triplets composed of the query image

and each feasible pair of the retrieved matches are formed.
We estimate the relative location of the query image with
respect to the two matched images by finding the trifo-
cal tensor and performing SfM [17, 16]. For the triplet
{I,mi,mj}, this operation yields {lI , li, lj} which are the
camera locations of I, mi and mj in the coordinate sys-
tem returned by SfM (which is usually centered at one of
the camera locations), respectively. Note that the locations
lI , li, and lj are typically three dimensional. However, any
arbitrary three points fall on a plane, and therefore, their
coordinates can be two dimensional. Hence, assuming the
images were taken on a roughly flat region, we can reduce
the dimensionality of lI , li, lj to two (e.g. using PCA).

We want to have an estimation of the GPS-tag of I us-
ing the triplet. Therefore, the relative locations lI , li, and
lj should be transformed from the SfM coordinates system
to the global GPS coordinate system1. These two Cartesian
coordinate systems are related by a similarity transforma-

1Note that GPS locations are usually specified by Latitude and Longi-
tude values which are in spherical coordinate system. However, they can
be easily converted to a Cartesian system called East, North, Up (ENU).
Therefore, for the sake of simplicity and without loss of generality, we as-
sume all of the GPS coordinates in this paper are in this Cartesian system.
We use the two dimensional version (East-North) of this system.



tion consisting of rotation, translation and scaling:[g
1

]
= (RST )

[
l

1

]
, (1)

where l is a point in the SfM coordinate systems and g is
its corresponding point in the global GPS coordinate sys-
tem;

[
g
1

]
and

[
l
1

]
are homogeneous coordinates of g and l,

respectively. R, S and T denote the 3 × 3 rotation, scal-
ing and translation matrices. At least two pairs of g ↔ l
correspondences are needed in order to calculate the RST
transformation of equation 1. Since the two matches mi

and mj are GPS-tagged, we use their GPS-tags and li and
lj to compute RST of the triplet. This transformation is
then used for finding the location of I in the GPS coordi-
nate system:

[
gI
1

]
= (RST )

[
lI
1

]
. Since we have

(
µ
2

)
feasible triplets, we will have

(
µ
2

)
different estimations for

the GPS-location of the query using the described method.
We assumed the query image and its matches were taken

on a roughly flat surface and reduced the dimensionality of
the locations to two. An alternative way would be to keep
the coordinates three dimensional and use quadruplets in-
stead of triplets (since one more correspondence would be
needed to compute RST in 3D). However, that would be
undesirable since a quadruplet is more likely to be affected
by noisy GPS-tags (as it has one more image), and thus, the
overall percentage of the accurate estimations would drop.

2.2. Robustification Using Random Walks
The estimation of the GPS-location of I which a triplet

yields is accurate only if both of the parent reference im-
ages have accurate GPS-tags. Since we assume an unknown
subset of the images in the dataset have inaccurate GPS-
tags, a considerable number of the estimations are inaccu-
rate. However, unlike the inaccurate estimations, the accu-
rate ones are expected to show a high consistency with each
other. Therefore, we use Random Walks for discovering the
reliable subset of estimations and assigning a score to each.
Intuitively, Random Walks diffuse the score of one node to
the neighboring ones if they have a high consistency. This
can be imagined by assuming a person is to walk from one
node of a graph to another and count the number of times
each node is visited; the probability of the next node to
travel to is determined by a predefined consistency between
the nodes. If the number of visits to each node is interpreted
as a score, after a large number of walks, the nodes which
are more consistent to one another will have a higher final
score as they are visited more often.

We define the graph G = (N , E) where N and E rep-
resent the set of node and edges. Each node represents one
estimation, i.e. N = {g1, g2, . . . , gλ}, and there is an edge
between each pair of nodes, E = {(gi, gj), i 6= j}. We
include the original GPS-tag of I, as an estimation for its
correct GPS-location, in N as well. Therefore, the total

Image Locations Density Map (d)

0

1

2

3

4

5

6

7

8

9

10

Figure 3. Left: the GPS-tags of images in a collection of user-
shared images. Right: the corresponding geo-density map d.

number of nodes is the number of estimations plus one.2

The probability of transition from node i to j is defined as:

p(i, j) =
e−σ‖gi−gj‖2∑λ
k=1 e

−σ‖gi−gk‖2
, (2)

where ‖.‖2 denotes the l2 norm. Equation 2 specifies the
transition probability between two nodes according to their
GPS-distance. It captures the common sense that the closer
the nodes, the more consistent they are, and the higher the
transition probability is. We set the insensitive parameter
σ to 0.05 to reduce the transition probability between the
nodes which are inconsistent by more than 60 meters to less
than 5%. The denominator normalizes the summation of the
transition probabilities departing from each node to one.

2.2.1 Incorporating the Geo-density of images

As discussed in section 1, the user-shared images typically
show a severely non-uniform geo-distribution; this charac-
teristic can act as a bias and result in a reduction in the accu-
racy of tag-refinement. To better understand this, consider
the case where there exists a popular and unpopular photog-
raphy spots in the vicinity of each other. When performing
image matching between the query and the dataset, more
images from the popular spot are likely to be retrieved as
more images from that location exist in the dataset. Conse-
quently, there will be more triplet estimations coming from
that spot and the final estimation of Random Walks will be
leaning towards the location suggested by the images of that
spot. To reduce the impact of this phenomena, we incorpo-
rate the density of the dataset in our Random Walks formu-
lation. We define the initial score of the nth node in N as:

v(n) =

1
didj∑

a

∑
b

1
dadb

, (3)

where di and dj are the geo-densities of the two reference
images which generated the nth triplet estimation. We de-
fine the geo-density, d, of an image as the number of other
reference images within the radius r of it. The geo-locations

2minus the number of triplets for which SfM failed to estimate lI .
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Figure 4. The process of Random Walks shown for a sample query
in the East-North coordinate system. The initial scores based on
geo-densities along with the relevance scores after the first and the
last iterations, as well as the final estimation are illustrated.

of a collection of user images from Washington D.C. are il-
lustrated in figure 3-left; the corresponding density map (d)
is shown on the right. The denominator of equation 3 is in-
tended to fulfill the Markov chain requirement of ‖v‖1 = 1.

According to equation 3, the higher the densities of the
parent images, the lower the initial value of the correspond-
ing estimation. That is because a high density value implies
many triplet estimations originated from the corresponding
spot will be included in N . Therefore, their overall impact
needs to be reduced to restrain them from dominating the
rest of the estimations. To better understand why equation
(3) helps in realizing this goal, consider the simplified case
where there are two spots f and q with df and dq images in
their vicinity. The number of triplets formed by taking one
image from spot f and another from spot q is dfdq . There-
fore, by defining the initial value of an estimation as the in-
verse of this number, we constrain the total estimations orig-
inated from different spots to have equal values irrespective
of the number of references images in their neighborhood.

In our experiments, we set the value of r and the initial
score (before normalization) of the estimation correspond-
ing to the initial GPS-tag to 5 meters and 1, respectively.

2.2.2 Adaptive Damping Factor

Having the node-to-node transition probabilities and the ini-
tial scores, Random Walks updates the relevance score of
one node at each iteration based on the probability of tran-
sition from other nodes to it. Equation 4 is the formula of
the basic Random Walks which performs this operation:

x(k+1)(j) =

λ∑
i=1

1©︷︸︸︷
α xk(i)p(i, j) +

2©︷ ︸︸ ︷
(1− α)v(j), (4)

where xk(i) is the relevance score of the ith node at the
kth iteration. The argument of summation (left term) is the

part which computes the probability of transition from other
nodes to a particular one, and the right one is a damping
term. The damping term was added to Random Walks to en-
able leveraging the prior knowledge about the relevance of
nodes and to ensure irreducibility of the transition probabil-
ities matrix which is a convergence condition for Random
Walks [13, 7]. α is a mixture constant usually set to a value
between 0.8 and 1. The summation of the terms 1© and 2© in
equation 4 has to be 1 since the summation of the relevance
scores at any iteration must be 1:

∑λ
i=1 xk(i) = 1.

A careful look at equation 4 reveals an important char-
acteristic of the basic Random Walk: the updated relevance
scores always include (1 − α) of the initial scores. That
means (1 − α) of the initial score of a node appears in the
final relevance score regardless of its consistency with the
other nodes. This is undesirable particularly when the nodes
could include outliers with inaccuracies, as it essentially
means a fixed portion of the input noise will always appear
in the output. We propose a damping factor which adap-
tively changes according to the consistency of each node to
the others. We accomplish this by making the damping term
of a node a function of its relevance score at each iteration:

x(k+1)(j) =
1

η

( λ∑
i=1

1©︷ ︸︸ ︷(
1− (1− α)xk(j)

)
xk(i)p(i, j)

+

2©︷ ︸︸ ︷
(1− α)xk(j)v(j)

)
. (5)

Equation 5 is equivalent to equation 4 with the difference
that the damping term ( 2©) is proportional to the relevance
score of the node; therefore, the amount of contribution
from the initial score of the node depends on its so-far con-
sistency with the other nodes. Hence, an arbitrary noise
in the input can be handled as the input error does not di-
rectly propagate in the output. In the context of our prob-
lem, we will show (in section 3.3) that Random Walks with
the adaptive damping factor can handle GPS-location es-
timations (gi) with arbitrarily large errors while the basic
Random Walks fails to do so.

Similar to equation 4, the term 1© in equation 5 is equal
to (1- 2©). The normalization constant η given below makes
the summation of relevance scores at all iterations 1:

η =

λ∑
j=1

( λ∑
i=1

(
1− (1− α)xk(j)

)
xk(i)p(i, j)

+ (1− α)xk(j)v(j)
)
. (6)

The matrix form of Random Walks with the adaptive
damping factor (i.e. equation 5) can be derived as:

x(k+1) =
1

η
(xkΓP + v(I − Γ)), (7)



where
Γ = diag(1− (1− α)xk). (8)

x(k) and v are 1 × λ dimensional vectors of the relevance
scores at the iteration k and their initial scores respectively.
P is a λ× λ matrix which has the pairwise transition prob-
abilities as defined in equation 2. diag(.) is an operator
which generates a diagonal matrix where the elements on
the main diagonal are the elements of the argument vector
and the rest of the elements are set to zero. Also, the simpler
matrix form of the normalization constant, η, can be written
as η = ‖xkΓP + v(I − Γ)‖1.

Notice the similarity between equation 7 and the matrix
form of basic Random Walks: xk+1 = αxkP + (1− α)v.
The main difference is that the damping factor matrix Γ is
adaptively changing at each iteration instead of being fixed.

The relevance scores are iteratively computed until they
converge to the final values xπ , commonly termed as “sta-
tionary probability”. Therefore, the vector xπ includes the
final relevance scores of all of the GPS-location estimations.

2.2.3 Final Tag Estimation using the Relevance Scores

The estimations which are severely affected by noise are
expected to have ≈ 0 final relevance scores, and the other
estimations gain scores based on their agreement with the
other nodes. Thus, we compute the refined GPS-location of
the query, I, utilizing a weighted mean using the scores xπ:

ĝ =

λ∑
i=1

gixπ(i), (9)

where ĝ is the refined GPS-location. The process of Ran-
dom Walks is illustrated in figure 4 where the initial scores
(based on the geo-densities) and the relevance scores after
the first and the last iterations are demonstrated. The refined
GPS-location along with the initial location and the ground
truth are shown as well. Notice that the estimations which
are far from the correct location are successfully identified
by the Random Walks as they have a low relevance score.

3. Experimental Results
We performed our evaluations on a mixed dataset of

18,075 GPS-tagged user-shared images from the cities of
Pittsburgh, PA; Palo Alto, CA and Washington, DC. The
images were downloaded from Panoramio, Flickr and Pi-
casa and were all captured and GPS-tagged by users.

3.1. Statistical Properties of Error in User Tags
Existence of inaccuracies in the user-shared GPS-tags

has been acknowledged in several papers [20, 12, 5], and
a few previous publications reported statistical properties of
error of geo-tags acquired from GPS devices or by assuming
the output of their methods to be the ground truth [3, 14].
In order to provide a formal large scale statistical study of
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Figure 5. Left: the distribution of the error in the user-specified
GPS-tags of 8127 images with inaccurate tags. It shows a near-
Gaussian distribution with the mean and standard deviation of
425.6 and 228.0 meters, respectively. Right: the results of tag
refinement when no additional contamination is added.

the amount of noise in user-shared tags, we manually veri-
fied the accuracy of the GPS-tags of 8,127 images captured
in Pittsburgh. We found that, depending on the resource
website, typically about 10.2% to 30% of the user shared
images have inaccurate tags (Panoramio showed the least
error). By “inaccurate”, we mean an image whose GPS-tag
has an error more than 30 meters which is the nominal ac-
curacy of the commercial GPS devices. Figure 5-left shows
the distribution of the error of the inaccurate GPS-tags. It
shows a near Gaussian distribution with the mean and stan-
dard deviation of 425.6 and 228.0 meters. We focus on the
errors less than 1km in figure 5-left, as the larger values
seem to significantly correlate with the layout of the city
and consequently fail to generalize.

3.2. Tag Refinement Results
As the test set, we selected a subset of 500 images from

the dataset and accurately annotated their ground truth lo-
cation (with an error < 10 meters). We refined the GPS-
tags of the test set images using the rest of the images
in the dataset and compared the refined location against
the ground truth to find the refinement error. The query
images which returned less than 5 matches from the rest
of the dataset and the ones for which SfM failed to gen-
erate at least 9 estimations were removed from the test
as they typically correspond to either isolated images or
panoramic/edited ones. Figure 5-right shows the refinement
results when no additional contamination was added to the
dataset; the input error is the inaccuracy of the user tags.
The distributions of error in the input and output are shown
in the top which show the considerable improvement made
by our method. The error scatter plot in which each point
represents one query image is illustrated in the bottom.

In another experiment, in order to investigate the per-
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Figure 6. The refinement results for various contaminations with
the mean values of 100 and 500 meters. The distributions and
scatter plots are shown on the top and bottom rows, respectively.

formance of our method under various scenarios, we added
random Gaussian noise with the mean values of 100, 500,
1000, 2000, 3000, and 4000 meters to 5, 10, 20, 33 and 50
percents of the 18075 images in our dataset; the standard
deviation was set to 0.5 of the mean to replicate the user
tags’ error (see section 3.1). Note that these errors are on
top of the already existing noise in the user specified tags in
our dataset. Therefore, the additional contamination deter-
mines the lower bound of noise since the exact amount of
error in the dataset is unknown as the ground truth location
of all of the 18075 images are not known. We also made
sure that in this experiment, the query images were among
the ones with contaminated GPS-tags to ensure the evalu-
ation is fair and challenging enough. Figure 6 shows the
results of this experiment for the additional contamination
percentage of 20% with the means values of 100 and 500
meters. As apparent in both of the distributions and scatter
plots, our method significantly reduces the amount of error.

Figure 7 (a) shows the mean of the output error for var-
ious amounts of contaminations in the input tags. Two ob-
servations can be made in the figure 7 (a): first, for the
contamination percentages less than 30%, our method al-
most completely eliminates the error regardless of the mean
of the contamination in the input. That is why the error
curves for the contamination percentages of 5, 10 and 20
are almost flat. This shows the high empirical Breakdown
Point [6] (defined as the resistance of a method against the
proportion of inaccurate observations in the data in robust
statistics) of our estimator. However, when the percentage
of error increases to beyond 33% and 50%, the output error
becomes noticeable, yet it is considerably less than the error
in the input. This observation is consistent with the bases of
our method as the ratio of the number of estimations not
affected by noise over all of the estimations is

(
n−nq

2

)
/
(
n
2

)
where q and n are the percentage of noisy tags and total
number of images in the dataset, respectively. This ratio
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Figure 7. (a): The performance of the proposed refinement method
for additional contaminations with various mean and percentage
values. (b): the ratio of the accurate estimations over the total
number of estimations with respect to the percentage of noise. (c):
the Influence Function of our method and the baseline (mean).

is shown in figure 7 (b); as apparent in the plot, when the
percentage of contamination goes beyond 30% and 50%,
the percentage of estimations affected by noise increases to
over 50% and 75%, respectively, and thus, it becomes ex-
cessively difficult to discover the inliers. Also, figure 7 (b)
justifies why we used images triplets for generating the es-
timations and not quadruplets or quintuplets; the ratio of 7
(b) would drop with a sharper slope if more images were
used for generating an estimation which is undesirable.

Additionally, the Influence Function, which is a measure
of the dependence of an estimator on the displacement er-
ror of one observation [6], of our method has the favorable
descending shape (see figure 7 (c)). That means a sample
with an arbitrarily large error have a small impact on our
final estimation whereas it has an unbounded effect on the
results of non-robust methods such as mean.

The dashed curves in 7 (a) illustrates the results of us-
ing the average of the triplet estimations as the refined GPS
location (i.e. bypassing Random Walks and using uniform
mean instead). Unlike the Random Walks results, the out-
put error curves of all contamination percentages are always
monotonically increasing, which shows the input error is
propagated to the output. Similalrly, table 1 compares the
refinement results when Random Walks were replaced by
alternative mode seeking methods. Unlike Random Walks,
incorporation of the geo-density is not straightforward when
Mean Shift or RANSAC is employed. Moreover, employ-
ing Means Shift or RANSAC requires specifying a kernel
function (we used Gaussian) or a distribution for the inlier
nodes (we used a uniform disk), respectively; on the con-
trary, Random Walks only need a pairwise transition func-
tion. Also, Random Walks is superior to inference tech-
niques, such as Loopy Belief Propagation, that have con-
vergence issues in fully connected graphs [15].

In general, inaccurate estimations by SfM (which usually
causes finer errors), or too few or no uncontaminated triplet



Input Error (m)
100m 300m 3000m 5000m

M
et

ho
d

Mean 79.4 95.9 244.3 459.3
RANSAC, BW=20m 38.2 48.3 93.5 153.8
RANSAC, BW=150m 73.2 77.7 82.9 83.1
Mean Shift, BW=20m 34.1 45.2 81.2 130.7
Mean Shift, BW=150m 61.4 63.7 67.2 67.4
Ours (Random Walk) 34.0 34.8 38.4 43.6

Table 1. Comparison of tag refinement results of various methods.
The percentage of additional contamination is 20%.

estimations (rare but leads to a large error) are the two main
reasons behind the cases which our method failed to refine.

3.3. Evaluation of the Adaptive Damping Factor

Figure 8 shows the evaluation of the proposed adaptive
damping factor compared to the conventional damping. On
the left, the distribution and scatter plot of the error in the
input and output for α = 0.8 and the mean contamination
of 3,000 meters in 20% of the images is shown.

The curves on the right illustrate the mean error in the
output of Random Walks with the constant (i.e. equation
4) and adaptive damping factors (i.e. equations 5, 7) for
various values of α. The value of α determines the contri-
bution of the initial scores in the final relevance scores; the
green curve signifies the error of the constant damping fac-
tor increases with increasing α while the error of adaptive
damping factor remains nearly flat. That shows adaptive
damping successfully prevents the noise in the input from
being directly propagated in the output.

Incorporating the Geo-Density: Table 2 provides the
performance of utilizing the geo-density (equation 3) as the
initial score compared to using uniform initial scores. As
apparent in the table, for almost all values of α and input
contaminations, the geo-density yields better output error
compared to the uniform scores (except for the case of 300
meters where the performance of both methods are≤ 1 me-
ter different.); the improvement made by density handling
is more noticeable in large errors. The red numbers show
the best performance for each value of contamination. The
α values between 0.80 and 0.90 typically yield the best re-
sults where lower values work better for lower errors and
vice versa; that’s because in lower contaminations, the ini-
tial scores are more accurate and consequently increasing
their influence boosts the performance. Since we can make
no prior assumptions about the mean of error, in all of our
experiments, we set α to 0.90 which is found to work satis-
factorily for both small and large errors. Bear in mind that
our query set is a subsample of our large dataset; the im-
provement made by density handling would be even more
significant if the test set showed a distribution relatively dif-
ferent from the rest of the dataset.

3.4. Empirical Convergence and Efficiency

On an 8 core 2.4 GHz machine running MATLAB, our
framework, excluding performing SfM on triplets, runs in
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Figure 8. Evaluation of the adaptive damping factor. The distri-
butions and scatter plot comparing constant and adaptive damping
are shown on the left. The curves on the right compare the adaptive
and constant damping factor for different values of α.

0.04 seconds per image. The main reasons behind the high
efficiency of our method is the fast convergence characteris-
tic of Random Walks and forming the graph of estimations
in a local manner (i.e. separate for each query).

In order to empirically analyze the convergence of the
proposed formulation for Random Walks with adaptive
damping, we randomly generated a set of 1 million graphs
with 100 to 10k nodes and various distributions (Gaus-
sian, GM, uniform and their mixtures) for unary and binary
terms. Random Walks converged in 100% of the instances
in the average time of 0.0070 seconds with the standard de-
viation of 0.0067. The mean number of required iterations
and its standard deviation were 18.43 and 1.65, respectively.

3.5. Refinement using Image Geo-tags (no SfM)
So far, we generated the estimations, g., using SfM while

one could use the GPS-tags of the images matched to I as
the estimations for its location. However, that would im-
ply we assume the dataset is dense enough to the point that
there exist similar images in the dataset with camera loca-
tions very close to the one of I. Otherwise, performing the
tag refinement using the matched images’ GPS-tags would
achieve a limited success whereas SfM wouldn’t have the
requirement of having images with near-identical camera
locations to I. In order to empirically investigate this, we
performed an experiment to compare employing SfM vs.
using the GPS-tags of the matched images as the estima-
tions, g., in our framework. The scatter plot in figure 9-left
illustrates the results for the contamination with the mean
value and percentage of 3,000 meters and 20%. As ex-
pected, using SfM improves the overall accuracy (by 9.2m).

However, bypassing the SfM has some advantages such
as substantially lowering the time complexity or increasing
the number of estimations due to the typical high failure rate



Input Error (m)
100m 300m 3000m 5000m

Den. Uni. Den. Uni. Den. Uni. Den. Uni.

α

.95 35.1 35.2 35.8 35.6 38.6 38.8 39.4 43.1

.90 34.0 35.2 34.8 35.2 38.4 42.1 43.6 52.1

.80 33.8 34.0 36.0 35.2 51.0 52.1 51.6 73.5

.60 34.7 34.9 37.8 36.8 63.45 65.1 67.4 101

.40 36.4 36.5 38.8 37.8 67.5 72.4 81.4 118
Table 2. Evaluation of the density handling method for various
values of α and contamination means. Den. and Uni. represent
setting the initial scores based on the geo-density or uniform scor-
ing. The bold numbers show the best performance for a particular
value of α and contamination means. The red ones show the best
overall performance for a particular contamination mean.

of SfM, which could make this approach desirable in certain
scenarios, e.g. when a fine error in the results is acceptable.

3.6. Tag refinement vs. Localization
We used the initial GPS-tag of the query image in our

framework in order to refine the tag. However, our approach
could be viewed as an image geo-localization method if the
initial geo-tag was not leveraged. The scatter plot of figure
9-right shows the results of an experiment on the overall
impact of the initial GPS-tag in the final estimated GPS-tag
(i.e. tag-refinement vs. localization mode). The mean and
percentage of contamination are 3,000 meters and 20% re-
spectively. We made sure the initial GPS-tags are not con-
taminated in this experiment as we are investigating their
impact. As one would expect, utilizing the initial GPS-tag
leads to better results as it is an additional cue to the right
location of the query; this additional estimation could be-
come essential particularly for the images for which few
matches were retrieved from the dataset or few estimations
were generated using SfM.

However, the mean of the output error in localization
mode is only 82.2 meters while 20% of the dataset images
have the mean contamination of 3,000 meters. This signifies
our method preserves its robustness trait in the localization
mode as well and can be used for geo-localization purpose
when the reference dataset includes unknown inaccuracies.
This is especially important as the majority of existing im-
age localization methods [12, 5, 8] do not have a particular
mechanism for dealing with noisy tags in their reference
data (i.e. the noise in input will directly affect the output).

4. Conclusion
In this paper, we proposed, to the best of our knowledge,

the first method for refinement of the GPS-tags of crowd-
sourced images. Given a large dataset of GPS-tagged im-
ages with an unknown subset with inaccurate tags, we dis-
covered the contaminated subset and adjusted the GPS-tags
therein to the correct locations. This was done by perform-
ing image matching, generating location estimations using
SfM on triplets of matching images, performing Random
Walks to identify the subset with the maximal agreement,
and finally using a weighed average of the consistent esti-
mations. We proposed an adaptive damping factor for Ran-
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Figure 9. Left: The scatter plot showing the effect of using SfM for
generating the location estimations as compared to directly using
the GSP-tags of the matched images as the estimation. Right: The
impact of the initial GPS-tag in the overall results (i.e. localization
vs. tag-refinement mode).

dom Walks and incorporated the geo-density of images to
minimize the bias it induces in the results. The experiments
evaluated various aspects of the method and showed it con-
stantly performs robustly across different scenarios.
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